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Abstract

An exact expression for the expected value of the mean square difference of the two data sets acquiret
IEEE 1057 Sindard Random Noise Test of analog to digital converters is derived. This expression cal
to estimate exactlthe amount of random noise present which is an improvement over the heuristically
estimator suggested in the standard. A studyhefinfluence of stimulus signal amplitude and offset ol
existing estimator is carried out.
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1. Introduction

Knowledge of the amount of random noise in an analog-to-digital converter (ADC) is
important for an engineer designing an electronic circuit containing an ADC used to measure
a given quantity. This knowledge allows the proper choice of amplification and filtering to
use in order to minimize the effects of noise. Knowing the amount of random noise is also
very important in ADC testing in two instances: first, when noise itself is used as the stimulus
signal [1, 3] and its standard deviation has to be accurately controlled; and second, when it is
required to compute the uncertainty of the estimation results, be it in the Histogram Test [4,
5], the Ramp Vernier Test [6], or aperture uncertainty test [7], for instance. In signal
processing, where sinusoids are fitted to experimental data points, the value of random noise
present can be used to compute the bias [8] and precision [9] of its parameters, like amplitude.

The random noise present in an ADC can be estimated by acquiring two sets of samples
and computing the mean square difference between them as suggested in the IEEE 1057-2007
Standard for Digitizing Waveform Recorders [10] and the IEEE 1241-2000 Standard for
Terminology and Test Methods for Analog-to-Digital Converters [11]. In both sets the
stimulus signal has to be the same for each sample in order for the computed difference to
eliminate its influence and leave only the effect of random noise. The natural choice of an
input signal is a null voltage. This approach however does not work when the random noise
present in the ADC is small when compared with the quantization step since the samples
acquired will all have the same value. The computed mean square difference will be zero and
consequently a poor estimator of the random noise. In these situations a triangular stimulus
signal is used and the acquisition is triggered by it in order for the value of the stimulus signal
of each sample to be the same so that it can be eliminated when subtracting the two sets.

Both IEEE standards suggest an empirically derived expression to be used as estimator for
the amount of random noise present. This estimator, in certain conditions, may have a large
bias, as will be shown later. In [12] the precision of the estimator was studied and an
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analytical expression was derived. Here a new way of estimating the amount of noise present
is proposed. Although more complex, it provided more accurate results.

We start by determining the exact expression for the expected value of the mean square
difference, given any value of the stimulus signal amplitude, offset and ADC random noise
standard deviation (Section 2). This expression will be used to determine the error of the
heuristically derived estimator used in the IEEE 1057-2007 Standard (Section 3). The
theoretical study carried out will then be used to show how to compute an accurate estimate of
the ADC'’s random noise standard deviation (Section 4). This is a complex procedure which
requires the exact knowledge of stimulus signal amplitude and offset and is advantageous
when very accurate estimations are required.

2. Theoretical Analysis of the Mean Square Error

Random additive noise in ADCs, as described in [1], is a hon-deterministic fluctuation of
the ADC output and is described by its frequency spectrum and statistical properties. It is
usually considered that the noise present is white (flat frequency spectrum), presenting a
stationary probability density function and that the noise is additive and independent of the
stimulus signal.

Due to the presence of random noise at the ADC input, the output kpadan( be

considered a discrete random variable which can assume any value betweezi*0-anfbr
a np-bit ADC. lIts statistical properties will depend on the ADC quantization epnd on
the amount of random noise, namely, on the value of random noise standard deyiation
By acquiring two setska andkb, of M samples each and computing the means square
difference (or error):

1M1 2
mse=—- 3 (ka; - kg )", (1)
M 2
it is possible to estimate the standard deviation of the random noise present in the ADC. In the
following we will show how to do this.

The two sets of samples acquired are triggered at the same input voltage and thus the value
of the stimulus signal for each sample will be the same in both sets. The random noise,
however, will be different in each set(andrb) which will lead to different output codes.

The output codes for both selts,adkb will be given by:

ka; = roundE Y+ ra}g {=0M-1 @
kbj = round( y + rh)
The output codes can also be defined by:
ka; =y, +rg +vg .
V| = -
- , j=0M-1 3
kb, =y, + b +vh 3)

where va; and vb; are the quantization errors which are equal to the fractional part of the
input voltagey;:

va; = y.+ra].> . B
VbJ- éy:+rq> L 1=0M=1 4)

J
Inserting (3) into (1) allows us to express the mean square difference as a function of the
rancbm noise and quantization error of thlesamples.
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M-1

mse=ﬁ > (raj —rbj +va —vh )2. (5)
i=0

Cdculating the square leads to:

L (raj2+rb1-2—2rajrbj)+(va1-2+vlq2—2qup)+

(6)

M i=0 +2(raj|/aj —rajvq ‘”} vg + rl?Vl?)

We are interested in determining the expected valuas# To achieve that, we note that
the random noise of the two sets is independent and that they have a null mean:

E{ rajz} = E{ rbjz} = U'rz
E{ ra; rbj} = E{ raj} E{ rq} =0.
Note that this does not take into account the fact that ADC nonlinearity can influence the
statitical distribution of the random noise after quantization.

We can also state that the quantization error of a given sample in one set is independent of
the value of the random noise of the same sample in the other set:

E{rayb} = € ra} §v g} =0

E{ rijaj} = E{rbj} E{vaj} =0.

(7)

(8)
Also, since the two sets are statistically identical, we have:

E{rajvaj} = E{ rqw}}. 9)
The expected value ofseis then:

E{ms¢ :;21(203 + 2E{vaj2} - 2E{v g} + 4E{ rajvaj}). (10)

The random noise can be considered stationary and thus all the terms in the summation are
equalwhich allows us to write:

E{ms¢:20r2+25{v é}—z € a p+4 E ra Ja (11)

To compute the expected values in (11) we will make use of the characteristic function
which is another way of describing a random variable more suitably than the probability
density function when we have sums of random variables. By definition, the characteristic
function ®,(u) of a random variablex is the expected value of variable’”. The

characteristic function of the quantization ewds (see [13] (5.10), for a similar situation but
without additive noise):

0, (W)= 3 @, (W), (1W)®, (1, +1¥), 12

| =—c0

where W =2 and n represents noise which is uniformly distributed in the interval
[-1/2 ; 1/2]. Note that if the stimulus signal is such that its characteristic furetjom (12)

ull for everyl different than 0, then we just haw, (u,)=®,(u,) which means that in such

condtions the quantization error can be considered a uniformly distributed random variable
[14].
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From the characteristic function in (12) is possible to determine the second moment of the
quantization error ([13], eq. (3.9)):

1 0%, (u,)
B2 =5— 13
V= . (13)
Inserting (12) into (13) leads to:
@ 2o, (u, + 1w
E{vz} ==y q>y(|w)mbr(|w)aa”(7vz) (14)
|==00 auV UV:O
The characteristic function of the uniformly distributed variabie (13], eq. (1.82)):
1
@, (u,) = E{ ej”“"} = Ej d™ dre sim{ij
n{Un ) > ) (15)
2
Its second derivative is ([13], eq. (1.84)):
%0, (uy) 2 . (u 2 u) 1 (u
a:ﬁ n :uﬁsmc(;j_urzl CO{;”)—Z SII’IE*S] (16)
Using this we can compute the derivative in (14):
2 2 1.
) - a)-=sindt) I
220, (1, +1) _ (|Lp)2 sing(7) (ILP)Z cog(7) 4smc( ) £ ( .
au,f _ 1 17)
W= |- I =
12
which can be simplified into:
2(-1)
920, (u, +1¥) ‘% 170
ou? ~ 1 (18)
u,=0 -— ,I=C
12

The characteristic function of a normally distributed variable, like the random noise here,

with null mean and standard deviationis:

2
r 2
_Or 2

ON (Ur): E{ (—:jrur} e ?'rzeir“f dr= e7ur . (29)

ot
“ I o

The characteristic function of the stimulus signal depends on the shape of the signal. For a
triangular signal with amplitud@g and offseCq, in LSB, one has:

_ Cth o c
oy (u)= [} =_ [ Zoemay=sind e (20)
C-%y

Inserting (18), (19) and (20) into (14), allows the computation of the second moment of the
quartization error as a function of stimulus signal amplitude and offset and the random noise
standard deviation.
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E{ } 7+ Z smc(AQNJ) JCQWe_%rI (21)

= 122
120

To compute the third term in the right member of (11) it is necessary to know the joint
charateristic function of the quantization error (see [13], eq. (9.4), for a similar situation but
without additive noise):

cD|/al/b( Va’ul/b) Z Z ® ( qu +l ZqJ) Dbrarb (IquvI qu) [@nanb(uv at I1quu|/ bt |2q’)- (22)
|1:—°°|2:—00
The uniformly distributed random variables and nb are independent and their joint
characteristic function is just the product of their individual characteristic functions. The same
is valid for the random noiga and rb As such we can write (22) as:
g
q)vavb(uvav u|/b Z z (D Iqu + ZqJ) 21t 2 BDn (uva + lll'P) [@n (uvb + |2l'P)- (23)
|1——°0|2——°0
The expected value of the product v by vb can now be computed from this
characteristic function.

E{vavk} lea qJvavb( va uvb)

(24)

aul/aul/b Uy, =0

Inserting (23) leads to:

© o? 242\w2 (_q\hH2

Evag=-Y Y o (1w+|2tu)@ 2 IZ)LP EL) 5 (25)
ly==c0| y=—00 IZI.I 2LIJ

L20 15%0

where we have used the fact that (see [13], eq. (1.83)):

co{w) ) sinc(@) ) (_1)| ko

= u, +1¥ u, +1¥ v (26)

0, (u, +1W)
ou,

Un=0 u, =0

Using (20) we can write:

42 _q\lH
E{vavly =- Z Z sing( Ag (bW +1,%))e elCali¥+2¥) o~ 2(' HE [gil ll);;. (27)
ly=—c0| y=—00 12
%0 15%0

The forth term in (11) is computed from the joint characteristic function of the quantization
errorand random noise.

O (U,u)= D @ (1W) 1, (u, +IW) D, (U, +IW). (28)

The expected value oV is:
E{rv} =i732¢w (urw)

-2 *
J ou, u, ur =0
u, =0

(29)
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Inserting (28) leads to:

E{n} = 3" o, (W) E@qs U +I1w) Dacbn(;jﬂw)\ _ (30)
|—— Ur u, =0 4

‘UV =0

Using (19) one has:

o P
)yt 2. (31)
r
Inserting (31) and (26) into (30) leads to:
o0 N _07r|2 2 |
E{n}= 2 o (W)wre 2 [{-1). (32)
| =—0c0
Using (20) we can write:
2
2w?2
E{r} smc(AQNJ) ¥ e E1 1-1)'. (33

|:—oo

It is now possible to exactly compute the expected value of the mean square error by
inseting (21), (27) and (33) into (11):

iCql¥ ‘irzlzq’z(—l)l
E{ms¢ =207 += +4|Z_: sind Aglw)e’“e 2 p?
120
o ) _ir2|2+|2w2 _l|1+|2
+|2_z Iz sin(:AQ(IltP+I2LIJ))eJCQ(|1w+'2W)Eé 2(1 2) élllz)wz + (34)
1——00 2:—00

%0 1520

+ 42 sinfAglw)e’ ™ 2r|2k'JZEQ—l)'.

|¢0

Note that the complex exponential Qfiw is the same agosColw) + j siColw) which is the

sum of an even and an odd part. In the summations the odd part cancels out leaving only its
even part. We can thus write (34) as:

E{ms¢ =207 + = +823|rc(AQ|qJ)Co5(CQ|qJ)e ‘72r|2q,2( -1) +

02(|l +I2) 2 ;_1)I1+I2

”EZ sinfAg (W +1,%))cod(Cq (I,W +1 %)) & 2

+

I1=115=1 w2
% 21202 w2 (_q)ive (35)
+42 > sinfAg (LW +1,¥))cosCq (W +1,W)) & {12412 1)12 .
h=—lp=1 I W

0 _irzlzq,z
+8Y sinfAylW) coColw)wie 2
|=-c0

120

-

In Fig. 1 we can see this expected value as a function of stimulus signal amplitude and
offset for three different values of random noise standard deviation. The oscillations of the
expected value with amplitude and offset are due to the “sinc” functidg ahd the cosine
function of Cq in the characteristic function of the stimulus signal (20).
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Fig. 1. Representation of the expected value of the mean square error for a triangular stimulus signal as a
function of its amplitudeAg) and offset Cy) for three values of random noise standard deviation.

From Fig. 1 it is also clear that those oscillations decrease with the stimulus signal
amplitude. This is because the characteristic functioy bas the termsinC(AQuy) which

decreases with stimulus signal amplitude. The oscillations of the expected valseai$o

decrease with the random noise standard deviation. This comes from the negative exponential

term of o2 in eq. (21), eq. (27) and egq. (33). As the random noise standard deviation

increases, the exponential term tends to 0 and all the summations become null. The expected
value ofmse becomes, from (11):

E{ ms¢ = 2(0,2 +1—12j (36)

which is just double the variance of the random noise plus the variance of the quantization
error (1/12). It is double because of the two sets of samples that are subtracted in the
computation ofmse Expression (36) is expected since for high values of random noise
standard deviation we can consider the random noise to be statistically independent of the
quantization error. Therefore we just have the variance of the sum of two independent random
variables which is the sum of their respective variances.

The value assumed by the expected valumséfor an integerAq is the same value it
assunes wherAg tends to cas seen by the dashed line in Fig. 2.

This can also be seen in Fig. 3 where we have plotted the expected value of the mean
square error as a function of random noise standard deviation for different values of stimulus
signal amplitude ranging from O to 1 LSB. Note that for higher value&gathe range
coveed is the same as seen in Fig. 2. For values? ajreater than 0.5 LSB we see that the
expected value ahsedoes not change significantly wigg.

The ®lid line in Fig. 3 represents the case when the stimulus signal amplitude is a multiple
of the quantization step of the ADBd integer).
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0.5

umse (LSB)

2 4
4, (LSB)

Fig. 2. Representation of the expected value of the mean square error as a function of stimulus signal
amplitude Ag). The dashed line is an approximation to the envelope of the expected value.

CQ=0'5 LSB

um.se (LSB)

0.2

0.4 o (LSB) 0.6

Fig. 3. Representation of the expected value of the mean square error as a function of the random noise standard

deviation for different values of triangular stimulus signal amplitude ranging from 0 to 1 LSB (dotted lines). The
solid line represents the case whege= 1 LSB.

3. Error of the IEEE 1057-2007 Standard estimator

Having determined an exact expression for the expected value of the mean square
difference as a function of stimulus signal amplitude, offset and the ADCs’ random noise
standard deviation, it is now possible to compute the expected value of the estimator used in
the IEEE 1057-2007 standard [10]:
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_ 1
9 = ] ' (37)

T, 1
{ l% ‘ ﬁmse‘l
2 2

The expected value of this estimator can be approximated by:

_ 1
'uf’r - / 1 1 : (38)
+

(1) (2]

We now define the error of the estimator as the difference between its expected value and
the actual value of the standard deviation of random noise present:

€, =Hg, ~Or- (39)

Fig. 4 represents the estimation error of the random noise standard deviation as a function
of the actual random noise standard deviation for different values of triangular stimulus signal
amplitude ranging from 1 to 2 LSB (thin lines). The thick line represents the maximum value
approximation valid foAq > 1 LSB.

In Fg. 5 a more limited range of values of noise standard deviation is shown (from 0 to 1
LSB). It can be seen, for example, that for a random noise standard deviation of 0.2 LSB the
estimation error could be greater than 0.03 LSB which is a relative error higher than 15% (for
values of stimulus signal amplitude greater than 1 LSB).

0.1
AQ: 1.2 LSB
CQ=0.5 LSB
)
w2
=2
$e”
—0.05}F
ol \ . \ .
0 2 4 6 8 10

c, (LSB)

Fig. 4. Representation of the estimation error of the random noise standard deviation as a function of the actual
random noise standard deviation for different values of stimulus signal amplitude ranging from 1 to 2 LSB (thin
lines). The thick line represents the maximum value approximation valfhferl LSB.
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0.1
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0.05F

e, (LSB)

—0.05f

-0.1 . . .
0 0.2 0.4 0.6 0.8 1
o, (LSB)

Fig. 5. Representation of the estimation error of the random noise standard deviation as a function of the actual
random noise standard deviation for different values of stimulus signal amplitude ranging from 1 to 2 LSB (thin
lines). The thick line represents the maximum value approximation valfhferl LSB.

0.1

A_=10..11LSB
[

CQ =0.5LSB

e, (LSB)

—0.05f

-0.1 .
0 0.2 0.4 0.6
o, (LSB)

Fig. 6. Representation of the estimation error of the random noise standard deviation as a function of the actual
random noise standard deviation for different values of triangular stimulus signal amplitude ranging from 10 to
11 LSB (thin lines). The thick line represents the maximum value approximation vadig ot LSB.

In Fig. 6 a case for higher values of stimulus signal amplitude is depicted showing the
smaller estimation error in these circumstances.

4. Estimating Exactly the Amount of Random Noise

As seen in the previous section, the expected value of the mean square error can be
computed using (35) for a given value of random noise standard deviation. This will give an
unbiased estimation of the random noise if the stimulus signal's amplitude and offset are
known. Since there is a one-to-one relation between the expected value of the mean square
error and the random noise it is possible to use the measured mean square error and obtain an
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estimate of the random noise standard deviation by solving (3m?fofhis has to be done
numerically since there is no analytical expression for it. This can be done with a computer,
limiting the computation of the summations in (35) to a finite number of terms. This is
possible, since the terms of the summations become smaller as the index vdyialaledlf)
grow. In Fig. 7 we show the estimation error for three different valuéswlfiere ¥ and P
are the limits of the summations. As we can see, a value of 30 is good enough for all practical
situations. The computational burden of numerically solving (35) with 30 terms in each
summation is negligible for modern computers (less than 100 ms).

Note that the estimation error decreases with increasing random noise standard deviation

since the terms in the summations depende‘tfrzl. For values ofo, greater than 0.2 LSB

evenP = 1 is enough.
Using only one term in the summations in (35) leads to a simpler expression:

c{msh =207+ 2 -sie{ 0] o o) 7 Lo
r 6 AQ CQ qu
2 (40)

Ir w2

+asin 20W) cos QW) e"”fzwzé—%'”fzwzé—Ssinc(AQw) cofCoW)oe 2

Looking at Fig. 7 one can see that for values of noise standard deviation higher than
0.1 LSB the error incurred in using (40) instead of (35) is lower than 0.005 LSB.

AQ =1LSB CQ =0.5LSB

0.06

0.0 \
0.04

¥ =1
0.03—

0.0
. P=2 \
0.01

0 0.05 0.1 0.15

e, (LSB)

0.2
o, (LSB)

Fig. 7. Representation of the error in estimate of the random noise standard deviation due to the computation of a
finite number of termsR) in the infinite summations of eq. (21), (27) and (33).

5. Canclusions

In this paper an exact expression for the expected value of the mean square difference of
the two data sets acquired in the 1057-2007 Standard Random Noise Test of ADC was
derived (expression (35)). This expression was used to show the bias of the IEEE 1057-2007
Standard heuristically derived estimator and to propose a new way of estimating the amount
of random noise present which gives unbiased results. The increased computational burden
may be justified when accuracy is paramount.
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The advantage of using the expression presented here, in terms of accuracy, is most
significant when the amount of random noise is smaller than 1 LSB. In practice this situation
is encountered in fast, low resolution ADCs used, for instance, in telecommunications.
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